Mark Scheme - AS 2.3 The Wider Impact of Chemistry

1 (a) Benefits: Stops fossil fuels from running out Reduces CO₂ emissions / greenhouse emissions / global warming / effect of global warming Reduces SO₂ emissions / acid rain There will be an investment in new technology Difficulties: Dependence on fossil fuel/Unlikely to meet current demand Renewable energy currently more expensive Reliability of supply from renewables Major development in energy efficiency technologies required Opposition by vested interests (Maximum3 marks from list, but need examples of both) (3) Consideration and discussion of benefits/difficulties (1) [4] QWC Legibility of text; accuracy of spelling, punctuation and grammar, clarity of meaning (b) I As temperature increases yield decreases [1] As pressure increases yield decreases II As temperature is increased, equilibrium moves to the left (1) Therefore forward reaction is exothermic (1) As pressure is increased, equilibrium moves to the left (1) Therefore more gas moles in products (1) [4] QWC The information is organised clearly and coherently, using specialist vocabulary where appropriate [1] If temperature is too low, then reaction is too slow (1) (ii) If temperature is too high, yield is too low (1) Compromise temperature – acceptable rate and yield (1) (Accept any two points) [2] (iii) Heterogenous catalyst [1] (iv) Lower temperatures could be used (1) Less energy consumption/increased yield (1) Equilibrium could be reached more quickly (1) (Accept any two points) [2] (v) curve (1) Energy [2] Extent of reaction (vi) $\Delta H = E_t - E_b$ [1]

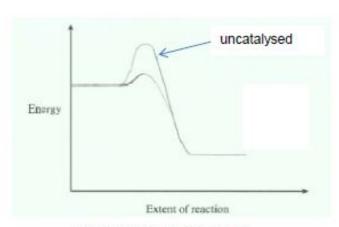
Total [19]

2	(a)	(i)	Temperature: 298K / 25°C (1) Pressure: 1 atm / 101.325 kPa or 100 kF (1)	Pa [2]	
		(ii)	Hydrogen gas is an element in its standard state	[1]	
		(iii)	$\Delta H = \Delta H_f (C_5 H_{12}) + 5 \Delta H_f (H_2 O) - 5 \Delta H_f (CO) - 11 \Delta H_f (H_2)$ (1)		
			$\Delta H_f (C_5 H_{12}) = -1049 - 5 (-286) + 5 (-111)$ (1)		
			$\Delta H_f (C_5 H_{12}) = -174 \text{ kJ mol}^{-1}$ (1)	[3]	
	(b)	(i)	Catalyst in different state to reactants	[1]	
		(ii)	Catalysts provide an alternative route (1) with a lower activation energy (1)		
		(iii)	Lower temperature or less time so less energy needed / Can make alternative production method possible with sustainable starting materi or less waste products	ials [1]	
		(iv)	At higher temperatures particles have more energy (1)		
			More collisions have energy above activation energy (1)		
			(Can obtain these two marks from correctly labelled Boltzmann ene distribution plot with two temperature lines (1) and Activation energy (1))		
			Successful collisions occur more frequently (1) – 3 max	[3]	
			QWC: selection of a form and style of writing appropriate to purpose and to complexity of subject matter	e [1]	
	(c)	(i)	No effect (1)		
			Same number of (gas) molecules on both sides of reaction (1)	[2]	
		(ii)	Lower yield of hydrogen (1)		
			Reaction shifts in endothermic direction to (try to counteract increase in temperature) (1)	e [2]	
		(iii)	No effect	[1]	

Total [19]

34	(a)	killing marine life / killing trees				
	(b)	(i)	eithe	er gas syringe or inverted burette attached to sealed vessel	[1]	
		(ii)	diffe	rent surface area would affect rate of reaction	[1]	
		(iii)	cond	centration / volume / nature of acid (1)		
			temp	perature (1)	[2]	
	(c)) (i)	increasing pressure will shift the reaction to side with fewer gas molecules (1)			
			incre	easing yield of SO ₃ (1) – reason must be given	[2]	
		(ii)	1	increasing temperature shifts equilibrium in endothermic direction (1)		
				as SO ₃ yield is decreased forward reaction must be exothermic (1)	[2]	
			II	increasing temperature increases energy of particles (1)		
				more collisions have energy above activation energy (1)		
				successful collisions occur more frequently (1)		
				can gain first two points from labelled Boltzmann distribution curve	[3]	
			Ш	e.g. iron in production of ammonia or any valid example	[1]	
	(d)	(i)	aton	n economy = 100%	[1]	
		lower meth highe	any	two points from:		
			r pressure used in B (1)			
			meth	nanol is a renewable starting material (1)		
			high	er atom economy in B or less waste in B (1)		
				ore reference to cost]	[2]	
		(iii)	iii) no effect on position of equilibrium	[1]		
				STORY SECURITY AND A STORY AND SECURITY OF A STORY AND	al [17]	

1	(a)	Oil is	s non-renewable / will run out (1)			
		Cont	tribution of CO ₂ to global warming (1)			
		Oil h	as other important uses (1)	[2]		
		(Maximum 2 marks)				
	(b)	(i)	Power stations / fossil fuels used to generate the electricity needed to make H ₂ (1)			
			Resulting in CO ₂ formation (global warming) / acid rain (1)			
			Manufacture of car produces pollution (1)	[2]		
			(Maximum 2 marks)			
			QWC Legibility of text; accuracy of spelling, punc and grammar, clarity of meaning	tuation [1]		
		(ii)	Disagree, no fuel is 100% safe / petrol can burn explosively			
			(Accept agree if valid reason given e.g. in terms of being lost)	f lives [1]		
	(c) (i) Hydrogen since frequency is inversely propo wavelength / smaller wavelength			al to [1]		
		(ii)	Hydrogen since energy is proportional to frequency greater frequency / E = hf	y / [1]		
nuclear charge (1			e greater shielding of <i>outer</i> electron (1) outweighs la ear charge (1) / He has greater effective nuclear cha outer electron closer to nucleus (1)			
			- max 1 if no reference to outer electron	[2]		
		(Maximum 2 marks)				
	(e)	(i)	²¹⁸ Po	[1]		
		(ii)	Since radon is a gas / inhaled, α particles will be g in the lungs (which may cause cancer)	iven off [1]		


Total [12]

5 (a) (i) They are both elements in their standard states.

(ii)
$$\Delta H = \sum \Delta H_f \text{ products } - \sum \Delta H_f \text{ reactants}$$
 (1)
= $(-286 + 0) - (-368 + 0)$
= $-286 + 368 = (+)82 \text{ (kJ mol}^{-1})$ (1)

or by a cycle where correct cycle drawn (1) correct answer (1)

(b) (i)

exothermic profile drawn (1) uncatalysed / catalysed line labelled (1)

(ii) I number of moles of benzene = 2000 [1]

Il mole ratio is 1:1 (1)

:. moles of phenol produced =
$$\frac{2000 \times 95}{100}$$
 = 1900 (1)

mass = $M_r \times number of moles = 94 \times 1900 = 178.6 / 179 kg$ (1)

alternatively

78 (g / kg) of benzene gives 94 (g / kg) of phenol (1)

∴ 1 (g / kg) of benzene gives 94/78 (g / kg) of phenol
∴ 156 (kg) of benzene gives 94 × 156/78 (kg) of phenol = 188 (kg) (1) but 95% yield
∴ 188 × 95 = 178.6 / 179 (kg) (1) [3]

[1]

[2]

[2]

- (iii) Look for at least four relevant positive points [4] e.g.
 - the process uses a (heterogeneous) catalyst, which can easily be separated from the gaseous products (thus saving energy)
 - the only other product of the reaction is gaseous nitrogen, which is non-toxic / safe / not a harmful product
 - the process uses nitrogen(I) oxide which is used up, rather than being released into the atmosphere from the other process (and causing global warming)
 - the process is exothermic and the heat produced can be used elsewhere
 - a relatively moderate operating temperature reduces overall costs
 - high atom economy

Legibility of text; accuracy of spelling, punctuation and grammar; clarity of meaning QWC [1]
Total [14]

- 6 (a) K → 1s²2s²2p⁶3s²3p⁶4s¹ (1) There is one outer electron and the loss of this electron gives a stable potassium ion with a full outer shell/ ion more stable than the atom (1) [2]
 - (b) (i) $\Delta T = 4.8 \,^{\circ}\text{C}$ (1) $\Delta H = -\frac{250 \times 4.2 \times 4.8}{0.125} = -40320 \,^{\circ}\text{J mol}^{-1} / -40.3 \,^{\circ}\text{kJ mol}^{-1}$ (2) [3] \checkmark for negative sign \checkmark correct value with relevant units
 - (ii) e.g. The volume used was not precise in measurement as the readings on a beaker are only approximate (1)

 The experiment was performed in a beaker and this was not insulated and heat was lost to the surroundings (1) [2]

there may be other acceptable answers here, for example based on slow dissolving

- (c) (i) 0.050 [1]
 - (ii) $(0.050 \times 24.0) = 1.20 \text{ (dm}^3)$ [1]
 - (iii) % $v/v = 1.20 \times 0.001 \times 100$ (1) = 0.06 (1) [2]
- (d) An increase in the concentration of (aqueous) carbon dioxide causes the position of equilibrium to move to the right. (1)

 This causes calcium carbonate to become aqueous calcium (and hydrogencarbonate) ions / dissolve (1)

 weakening shells / causing difficulty in formation of shells (1) [3]

Organisation of information clearly and coherently; using specialist vocabulary where appropriate QWC [1]

7	(a)		Enthalpy change when one mole of a compound is formed from its (constituent) elements (1) in their standard states / under standard conditions (1)		[2]
	(b)	(i)	$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$		[1]
		(ii)	-242 = 436 + 248 - 2(O—H) 2(O—H) = 926	(1)	
			O—H = 463 kJ mol ⁻¹	(1)	[2]
	(c)	(i)	I. Burning hydrogen will not produce CO ₂ (o	r SO ₂) as pollutants	[1]
			II. Hydrogen is very flammable, storing as N is solid therefore volume occupied by give hydrogen is less		[1]
		(ii)	If the MgH₂ is not kept dry, hydrogen will be could be a potential explosion	formed and there	[1]
		(iii)	Moles $MgH_2 = \frac{70000}{26.32} = 2659.6 (2660)$	(1)	
			Moles H ₂ = 5319.2 (5320)	(1)	
			Volume $H_2 = 1.28 \times 10^5 \text{ dm}^3$	(1)	[3]
	(d) (i)	(i)	An increase in temperature would decrease increase in pressure would increase the yie		[1]
		(ii)	Forward reaction is exothermic so equilibriu temperature is increased	m shifts to the left as (1)	
			More gaseous moles on the l.h.s. so equilibright as pressure is increased	rium shifts to the (1)	[2]
	(e)		Lower temperatures can be used Energy costs saved More product can be made in a given time ((1) (1) so more can be sold)	
			Enable reactions to take place that would be	(1)	
			otherwise	(1)	
			Less fossil fuels burned to provide energy ([1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1]	
			(any 3 of above)	(1)	[3]
			QWC Legibility of text; accuracy of spelling, grammar, clarity of meaning	punctuation and	[1]

Total [18]